Sorting signed permutations by inversions
in O(nlogn) time

Krister M. Swenson, Vaibhav Rajan, Yu Lin, and Bernard M.Erst

Laboratory for Computational Biology and Bioinformatics
EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland
{krister.swenson, vai bhav. rajan, yu.lin, bernard. noret }@pf!.ch

Abstract. The study of genomic inversions (or reversals) has been astegi
of computational genomics for nearly 20 years. After the¢iahibreakthrough
of Hannenhalli and Pevzner, who gave the first polynomiaktialgorithm for
sorting signed permutations by inversions, improved dlgaors have been de-
signed, culminating with an optimal linear-time algorittion computing the in-
version distance and a subquadratic algorithm for progidirshortest sequence
of inversions—also known as sorting by inversions. Renngiropen was the
question of whether sorting by inversions could be don@(imlogn) time.

In this paper, we present a qualified answer to this quediioproviding two new
sorting algorithms, a simple and fast randomized algoriéimd a deterministic
refinement. The deterministic algorithm runs in ti®nlogn -+ kn), wherek
is a data-dependent parameter. We provide the results efigxe experiments
showing that both the average and the standard deviatidref@rsmall constants,
independent of the size of the permutation. We concludedbutot prove) that

almost all signed permutations can be sorted by inversio@rlogn) time.

1 Introduction

Genomic rearrangements have been the subject of interessrcasover
the last 10 years. Initially identified in the 1920s in the f§ngme through

genetic studies [17, 18], then studied in detail in chloagpbrganelles in

the 1980s (for instance in a series of papers from Palmdr,$keginning
with [12, 13]), they were brought to the attention of the catapional
community in the early 1990s [14]. A large number of paperstsance
been published on the combinatorics and algorithmics obgea rear-
rangements (see [11] for a survey and [7] for a thorough nmaditieal
treatment). Starting at the beginning of this century, geiecaearrange-
ments have assumed much more importance with the adventaéwh
genome sequencing and the emergence of comparative genamig

major discipline in biocomputing.

Of the various genomic rearrangements studied, perhassipdest
and best documented is thwersion(also called reversal in much of the
Computer Science literature), through which a segment bf@ncosome
is reversed in place. In 1987, Day and Sankoff [6] formaliaedodel of
genomic inversions in which a chromosome is representeghasauta-
tion of signed gene indices, the sign indicating the digettf transcrip-
tion of the gene; in this framework, an inversion acts on aerval of the
permutation by reversing the order in which the indices app&thin the
interval and by flipping the sign of each index. Sankoff |ggmvided a
probabilistic model [15] and posed two fundamental questabout in-
versions in this framework: given two signed permutationgte same
index set, what is the smallest number of inversions requoéransform
one permutation into the other and what is a sequence ofsiorer im-

plementing this transformation [14]. The first problem isgho compute

an edit distance, where the edit operation is the inversf@nsecond is
to return an edit sequence—a problem usually known as fepitsince
a simple re-indexing can turn one of the permutations inéoidentity.
Many years of work were needed to ascertain the complexigaoh of
these problems. The breakthrough came in 1995, when Haalhieanid
Pevzner provided a a polynomial-time algorithm to solvénimbblems.
(In contrast, in 1997, Caprara [5] showed that both problewase NP-
hard if phrased in terms of unsigned permutations.) Theinghtime
for both problems has been steadily reduced over the yea?2d1, our
group gave an optimal linear-time algorithm to compute thedistance
[1]; and in 2004, Tannier and Sagot [20], building on the wofkKa-
plan and Verbin [9], gave &(ny/nlogn) algorithm to produce a sorting
sequence. Remaining open was the question of whether sogmeuita-
tions can be sorted by inversions@inlogn) time, just like sorting plain

numbers.

In this paper, we give a qualified positive answer to this taes
by describing two new algorithms for sorting signed perriaotes by
inversions. The first is a randomized algorithm that runsuargnteed
O(nlogn) time, but may fail; successive restarts reduce the prababil
of failure, but we cannot guarantee that every permutatidirbe sorted
with high probability with a finite number of restarts, sottitas not a
true Las Vegas algorithm. (Indeed, we give a family of peatiahs that

cannot be sorted by this algorithm regardless of the numierstarts.)

The other is a deterministic algorithm that always sortspienutation
and runs inO(nlogn + kn) time, wherek is the number of successive
“corrections” (detailed in Section 5) that must be applievalue, inci-
dentally, that is not related to the edit distamgalthough it is bounded
by it. We give a family of permutations for whidhis ©(n) (the worst-
case value fok) and thus for which our sorting algorithm will run in
quadratic time. However, we present the results of veryresite exper-
imentation showing that the expected value and the starakasction
of k are small constants (less than 1), independent e that the run-
ning time of the algorithm is, with high probabilit@(nlogn). Thus we
conclude (but do not prove) that almost all permutationsteEasorted in

optimalO(nlogn) time.

2 Preliminaries

A permutationtt is written as(TyTy. .. Ty), where each elememi is a
signed integer and the absolute values of these elemengdl alistinct
and form the se{1,2,...,n}. The absolute value af; is denoted by
IT5|. An inversionp(i, j) on a permutationt= (T...T§...Tfj...Th) re-
verses all elements betweanand while changing their signs giving
(Th...TG_1-TG...-TGT41...Th). We assume that every permutatiomof
elements is framed by elements 0 and1. In this way we consider each
permutation to be linear, noting that each linear permaomatorresponds

to n+ 1 circular permutations (of length-+ 1), which are equivalent in

terms of the sequences of inversions used to sort themspéeof an
inversionp(i, j) is the closed interval on the natural numbgrg] and
two spandi, j| and[k,l] overlapif and only if eitheri < k andk < j or
k<iandj<lI.

Two adjacent elements; andTg, 1 for 0 <i < n+1, form anadja-
cency An adjacency is amon-breakpoinif and only if we haverg, 1 —
T, = 1, otherwise it is dreakpoint An oriented pair (T5,TT), in a per-
mutation is a pair of integers with opposite signs such thatr; = +1.
The inversion induced by an oriented p@ir, 1), called anoriented in-
version is p(i, j — 1) for ;4 1; = +1, andp(i + 1, j) for 15 + 117 = —1.
An oriented inversion always creates a non-breakpoint; ayetkat it
healsthe breakpoint (or breakpoints—there could be two) to whigh
elements of the oriented pair belonged before the inversion

A framed common intervglFCI) [2] of a lengthn permutation is
a substring of the permutatiomays,...sb) or (-bssp...s5a) (with
S1S. .. S possibly empty) such that

— foreachi, 1<i <k, |a| <|s]| < |b|,
— foreachl, |a| < | < |b|, there exists g, 1 < j <k, with |sj| =1, and

— the FCIl is not a union of shorter intervals with the above praps.

The substring:s; . . . s is thus a (possibly empty) signed permutation of
the integers greater tharand less thab; elements andb are called the
frameelements. The framed interval is said to be common in thdsat a

exists, in its canonical fornf-a-(a+ 1)+(a+2)...+b), in the identity

permutation. FCIB is nestedinside FCIA if and only if the left and
right frame elements oA occur, respectively, before and after the frame
elements oB.

A components comprised of the frame elements from an FCI along
with all elements inside the FCI that are not used for a nestdyin-
terval. A non-trivial components a component that is comprised of at
least 4 elements. Aad componenis a component where all elements
have the same sign. Two components can only overlap at tine fede-
ments [3]. An inversion is said to hensafdf it creates a bad component,
otherwise it issafe A permutation igositiveif it is not the identity per-
mutation and every element is positive. A positive permaoraindicates
the existence of at least one bad component. Any permutediotaining
bad components can be transformed to another permutatibddlbs not
contain any bad component in linear time [1]. Thus, in theatgms we
describe, we assume that the input permutation does naioary bad

components.

3 Background: Data Structures for Permutations

To implement an algorithm for sorting by inversions, we needata
structure for handling permutations that supports twodaperations:
(i) choose an oriented inversion, and (ii) perform an iniers

We now describe the data structure of Kaplan and Verbin [8f th

stores a permutation in linear space and allows us to peidorimversion

in logarithmic time. The structure is a splay tree, in whible hodes
are ordered by the indices of the permutation, with one autit flag

maintained at each node.

To perform an inversiop(i, j) between (and including) indicésnd
J, indexi — 1 is splayed and the right subtree of the root is split from
the root yielding subtree®.; and T>; whereT,; (T>j) contains all ele-
ments with indices less than (greater than or equal.tblext, index|
Is splayed inT>; and again the right subtree is split from its root yield-
ing subtreedliey and T~ j whereT-.j contains all elements with indices
greater tharj andT,ey, contains the elements of the permutation that have
to be reversed. Finally, there are three subtrées:Trev andT-j. Now,
actually reversing the elementsTry can taked(n) time sinced(n) el-
ements could be reversed in a single inversion. To achieyarikbhmic
time complexity a lazy approach is takenrewersedflag is maintained
in each node, which if turned on indicates that the subtreeetbat the
node is reversed. Now instead of immediately reversing &areapwe
just set its reversed flag. During an inversion the reversegdt the root
of Trey is flipped andT.; is joined toTrey to getT<j. This is achieved
by makingTey the right child of the root off;, which still contains the
element at index — 1, yielding the tre€l<;. T<;j is then joined toT-
by splayingj in T<j, after whichT-.; is made the right child of the root
of T<j, yielding the final tree which represents the permutatioerahe

inversion. Since the only operation that takes more thasteomtime is

the splay and since splaying takes amortized logarithmme {iL6], each

inversion takes amortized logarithmic time.

A tree could have several reversed flags, but the invarianttaiaed
is that an inorder traversal modified by the reversed flagdyide per-
mutation. So to read the permutation one would traverseexsed sub-
tree in reverse order while flipping signs of elements reaestéd re-
versed flags cancel in the sense that a reversed flag on a ntide avi
reversed subtree, implies that the inner subtree (root¢ldaainode) is
not reversed. Thus, a subtree rooted at a node is reversed drdy if
there is an odd number of reversed flags in the path from theodbe

node (including the node).

When a sequence of inversions is performed, reversed flaggeata
nested to arbitrarily deep levels. We can push the flag dowavaised
path in the tree, by flipping the sign of the element in the nedehang-
ing the left and right subtrees, and flipping the reversedsfiagboth
children. The reversed flag of a leaf is cleared by just fliggts sign.
Pushing down a flag takes constant time per node so the lbgacitime
complexity of splaying is maintained. By pushing down thgslan the
splay path we ensure that the three subtrees credtgdTtey and T ;)

reflect the changes made in all the previous inversions.
This is exactly the data structure described in [9]; it candd@ a se-
quence ofd inversions inO(dlogn) time. The data structure maintains

only the state of the permutation at each step (in a lazy wégever it

does not maintain information about oriented pairs, notctdulo so ef-
ficiently, as a single inversion could change the orientatiftd(n) pairs.
Indeed, using this data structure to maintain the inforomatiecessary
to choose an oriented inversion at each step would incréaseihning
time by a factor oh.

To overcome this problem both Kaplan and Verbin [9] and Tereti
al. [19] used a two-level version of the data structure in whigleenmu-
tation is stored in linear blocks of siz&\/nlogn) each. Corresponding
to each block is a splay tree that maintains information aladluori-
ented pairgTg, ;) such that eitherg or 1 is in the block. Performing
an inversion while maintaining information about all ortieth pairs takes
O(y/nlogn) time and choosing an inversion at each sorting step takes
O(logn) time, so that the total time complexity of their algorithnss i
O(ny/nlogn).

In order to run inO(nlogn) time, these algorithms need to be able
to choose an oriented inversion in logarithmic time and thtemation
to identify such inversions must also be maintained in lalgaric time

through an inversion.

4 Our Algorithm

Instead of addressing the data structure (by designing adagavstruc-
ture that can somehow proce3&n) new pair orientations in logarithmic

time), we address the root question of identifying an ogdnhversion.

Our key contribution is that we need not maintain informatboutall
oriented inversions for every permutation at each sortieg-s-a few

suffice in most cases.

4.1 MAX inversions

Definition 1. Let (15, 17;) be an oriented pair in a permutation and bet
be the negative element in the pair. The oriented inversioresponding
to (15, 11)) is aMAX inversionif 1, has the maximum value of all negative
elements in the permutation. The péit, 1) is called theMAX pair of

the permutation.

For example the MAX inversion in the permutati¢h5-31-6 2-7) is
p(4,6), corresponding to the oriented pé2; -3), and the MAX inversion
in the permutation2 3-1-4) is p(1,3), corresponding to the oriented
pair (0,-1). We maintain information about only the MAX inversions in
the data structure and correspondingly perform a MAX ineeré each

sorting step. The result is algorithm MAX.

Algorithm 1 MAX
1: while there exists a negative element in the permutadion
2. Find index of maximum negative elememt
3. Findindex ofrg = || — 1.
4. Perform inversion corresponding to oriented ai Tt)).
5. end while

Because any permutation that contains a negative elemedios a
MAX inversion and because any sequence of oriented safesiove

is optimal [8], we can conclude as follows.

Lemma 1. In the absence of unsafe MAX inversions at any sorting step,

algorithm MAX produces an optimal sorting sequence.

Algorithm MAX fails to sort only when it is “stuck” at an allgsitive
permutation that is not the identity, which happens when axMiAver-
sion was unsafe. (We deal with unsafe inversions in the reotic.)
The same arguments hatautatis mutandig we choose an oriented pair
with the minimum negative element, yielding another altpon, algo-
rithm MIN. Combining the two strategies and picking one aidam at

each step gives us a randomized algorithm: algorithm RAND.

Algorithm 2 RAND
while there exists a negative element in the permutadimn
randomly select either MAX or MIN
if MAX then
Find index of maximum negative elememt
Find index ofrg = || — 1.
Perform inversion corresponding to oriented fdair 1T;).
else ifMIN then
Find index of minimum negative elemer.
Find index ofry = |my| + 1.
Perform inversion corresponding to oriented faiy, 17).
end if
end while

4.2 Maintaining information through an inversion

We now show how to maintain information about the maximumaneg

tive element of a permutation through an inversion usingsilay tree

data structure. We describe the process for MAX, but theals/analog

works for MIN.

Let the maximum negative element of a subtifdé\ X,eq be the el-
ement in the subtree that has the maximum value among altinega
elements in the subtree. The minimum positive elemBii\yos Of a
subtree is defined similarly. These values are stored in eadh of the
splay tree. Note that th& AX,eq Of the root node is the maximum nega-
tive element of the permutation, that is, the negative efgroethe MAX
pair of the permutation. ThMAX,eg Of @ node is the maximum of the
following three: theMAX,eq Of the left subtree, thi1AX,eq Of the right
subtree, and the element in the node if the element is negatiso no-
tice that whenever the reversed flag of a node is turned/@x¥X,eg and
MINposare swapped. Therefore pushing down areversed flag appes t

swap to the children, unless there is a cancellation of flags.

A splay operation performs a series of rotations based osttheture
of the tree and the index being queried. Each rotation clsaaagenost
three edges of a connected subtree while maintaining theypsearch
tree propertyMAXneg can be recalculated for only the subtree that is
affected, Recall that to perform an inversipfi, j) the splay tree is split
into three subtrees which are rejoined after the reversgd#a been set
for one of the trees. The value MAX,eg can be kept for each of the
subtrees in the process by simply checking the childrenefadlot after

each operation.

By maintaining theMAX,eg values in this fashion, one can maintain
the invariant that théAX,eq of the root node is the maximum negative
element of the permutation through any sequence of invessiSince
calculatingMAXmegtakesO(1) time per node, these modifications do not

alter the time complexity of the data structure.

Lemma 2. For any (signed) permutation of size n, there exists a data
structure that handles an inversion in(logn) time while maintaining

information about the maximum negative element of the petion.

4.3 Finding the MAX pair

We now describe how to obtain the elements of the MAX pair irea p

mutation using the modified data structure described above.

First the maximum negative element of the permutation iattedt. If
the element in a node is not equal to MAXneqOf the node theiM AXeg
of the node lies in either the left subtree or the right subtkthe node.
Therefore starting at the root one can go down the tree Igokinthe
maximum negative element. Reversed flags must be pushedalong
the path to ensure thdAX,eg values are updated and the correct path is

followed.

To find the second element of the MAX pair, a lookup vector ohpo
ers (ofn elements) maps each element to the node that contains the el-

ement. These pointers do not change throughout the conguuiid

enable constant-time lookup of the node containing thersketement

of the MAX pair.

4.4 Finding the indices of the MAX inversion

In absence of reversed flags, the indices of the MAX inversiam be
obtained directly from the current location of the nodesesponding to
the MAX pair. However, the presence of a reversed flag indgabdes
that have outdated indices, forcing additional work toiest the correct

indices.

The index of a node (with respect to the current state of thepe
tation) can be calculated using the index of the parent noddlee sizes
of the left and right subtrees. Thus the current index of aencah be
calculated whenever the reversed flag is pushed down froniné.size
of the subtree rooted at a node is easily maintained. If tloke moa right
child, then its index is one more than the sum of its parentex and the
size of the left subtree. If the node is a left child, thenrigax is one less
than the difference of its parent’s index and the size of idpiat subtree.
The index of the root is just the size of its left subtree. Thiasting at
the root, as the reversed flags are pushed down along anyngathtree,

the current indices can be calculated.

As one traverses the tree from the root searching for the maxi
negative element, the indices are recalculated. Afterdlae correspond-

ing to the second element in the MAX pair is found using thekigo

vector, its updated index can be retrieved by traversinguipe root (us-
ing parent pointers) and returning down the same path, pgstawn the

reversed flags and recalculating indices at each node.

4.5 Putting it all together

The previous subsections detail all the steps for perfograifMAX in-
version. The time complexity of each of these steps is eagn#byze.
Pushing down the reversed flag takegl) time per node. Thus, find-
ing the maximum negative element and its updated index t@kiegn)
time. Finding the other element of the MAX pair takegl) time and ob-
taining its updated index tak&3(logn) time. Therefore the complexity
of finding the two indices (steps 2 and 3 in algorithm MAX)¢logn).
For each inversion, maintainingd AXneg, MINpos, MINpeg, andMAXqos
in the nodes take®(1) time during split and join operations, a(1)
time for each rotation in the two splays. Therefore perfogrthe inver-

sion in step 4 of algorithm MAX takeS(logn) time. So we have proved:

Theorem 1. For any signed permutation of size n, a data structure exists

that

— allows checking whether there exists an oriented invergio®(1)
time,

— allows performing a MAX (or MIN) inversion, while maintang the
permutation, in @logn) time,

— and is of size (n).

Theorem 2. In the absence of unsafe inversions at any sorting step, al-

gorithm MAX produces an optimal sorting sequence {nlogn) time.

5 Bypassing Bad Components

We saw that algorithms MAX and RAND can get stuck at a positive
permutation by choosing an unsafe inversion. We offer twatagjies for

recovery.

5.1 Randomized restarts

For algorithm RAND we can simply restart the computationihgphat

a better outcome is met in the next run. Indeed, the expetsrfesm
Section 6 show that, for most permutations, this simple @ggr suf-
fices. However, this approach cannot always sort a perroatas there
exists a family of permutations that it cannot handle. Fatance, take
the permutation (3-4-2): both MAX and MIN inversions are unsafe
because they yield the same positive permutation (3 1 2 ¥)sthall ex-
ample can be extended to any length by appending the rezjnismber

of positive elements.

5.2 Recovering from an unsafe inversion: Tannier and Sagot’ S ap-

proach

Tannier and Sagot [20] introduced a powerful approach fairiign un-
safe inversions and augmenting the sorting sequence idlaptimal.

They noticed that it is computationally difficult to deteatansafe inver-

sion as it is applied; but it is of course trivial to find out thiae process
is stuck at a positive permutation. Their approach is thostmortem
their algorithm traces the sorting process back to the nexsint unsafe
inversion and inserts two or more sorting inversions betbeeunsafe
one without invalidating other sorting inversions. (Thiseres that the
sorting sequence grows in every trace-back phase.) Aféaréite-back,
the sorting process continues from the state of the permuotatst be-
fore the unsafe inversion. The new inversions that aretedare chosen
such that the bad component created by the previous unsa&feion is
no longer created and so, the (previously) unsafe invesnzhall the

inversions that followed it can be applied again.

They use amverlap grapho keep track of the remaining breakpoints
(and whether or not they are oriented). Using the overlaplgthey can
find the most recent unsafe inversion, find and insert morer&wns be-
fore the unsafe one, and continue sorting without invaiiggthe inver-
sions that have been applied after the most recent unsadesion [20].
However, the process may have to be repeated, as, evenwgjtaeeating
the sorting sequence, their algorithm may again get stuekpaisitive

permutation.

5.3 Recovering from an unsafe inversion: Our approach

We use the same general idea, but do not maintain the fullagvgraph,

as it is too expensive to maintain. Denotefythe first positive permu-

tation at which the algorithm gets stuck and pythe it" such positive
permutation. Recovering from a positive permutatgrinvolves three
steps: finding the most recent unsafe invergigrfinding and inserting
two other oriented inversions with the required propettied can be ap-
plied beforey;, and appending inversions without invalidating those-sort
ing inversions that had been applied after (and includindjVe describe

each of these steps in turn.

Finding the most recent unsafe inversion In the trace-back phase,
we undo the inversions that have been done so far in orderdatim
most recent unsafe inversipn Note that an unsafe inversion is an inver-
sion that, when undone, creates a good component from bagloswnts.
Denote byrt- Sandrt: p the result of applying the inversions from the se-
guence of inversionS and the single inversiop to the permutatiorr,
respectively. LeU (1) be the set of unsafe inversions on a permutation
and letB(1) be the set of bad componentsrinp for p € U (11). Undoing
the inversiorp in Tt p refers to performing on - p which yieldsrt, and
undoing the inversionS= p1, P2, ...,Pn in Tt- Srefers to performing the
inversions ofSin the reverse order which yields S-p,...p2-p1=TL
The sequence of inversions on input permutatiBrthat results in the

positive permutatiom; is denoted byg, sop; = 1°- S.

Remark 1.When undoing inversions froi§, the most recent unsafe in-
versiony; is the first inversion met that turns an elemenBiip;) from

bad to good.

Finding | is not trivial because framed intervals can be nested. For ex
ample the positive permutation (236 74589 10 1) has two cempo
nents: the one framed by the implicit frame elements 0 anchdd the
nested component framed by the elements 3 and 8. Undoingntbe i
sionp(2,7) will leave both bad components intact despite the fact that i
occurs within the frame elements of the larger componenisTim the
trace-back phas@(2,7) cannot be an unsafe inversion. However, undo-
ing the inversionsl(5, 7) andp(4, 5) will make the inner component good
and so these two inversions, had they been performed, wewkl heen
unsafe. The following remark characterizes undoing anferisgersion

in terms of the components B(;).

Remark 2.An inversion is the most recent unsafe inversjgnf and
only if it is the most recent inversion to change the indicka proper

nonempty subset of the elements from some compones(tp).

The trace-back algorithm is thus as follows: start undohgitiversion
sequencesy, checking after each inversion whether there exist compo-
nents inB(p;) with both changed and unchanged indices and stop undo-
ing when an unsafe inversion is found. This can be done byikgem
ancillary splay tree where nodes represent adjacencifs permutation

rather than permutation elements.

If every adjacency irp; were a breakpoint, the most recent inversion
would be unsafe; the heart of the problem, then, is with n@akpoints
and how they interact with the undoing of unsafe inversidvs present
a labeling of the ancillary tree so that the safety check camdried
out by a constant-time comparison on the two adjacencidshrby an
inversion. Each adjacency has a label indicating the inostioverlying
component along with a label that is set only for non-breakigo For
a given component, each group of consecutive non-brealgpfpgnor-
ing nested components) gets a unique second label. Thus/arsion
displaces only a fraction of the elements of a componentdf @mly if
both broken adjacencies are labeled as non-breakpoinstet same

component and non-breakpoint labels.

In the example, the permutation (2367 4589 10 1) has componen
label X for adjacencies (0,2), (2,3), (8,9), (9,10), (10&k)d (1,11), and
component label Y for the others. The non-breakpoint latdedshe same
for (2,3), (8,9), and (9,10), but different between (6,79 &4,5). Inver-
sionp(2,7) acts upon non-breakpoints with the same pair of labels while
inversionp(5, 7) acts upon non-breakpoints with different component la-
bels andu(4,5) acts upon non-breakpoints with different non-breakpoint

labels.

We can list the endpoints of the components of a permutatibnear
time [1, 2]. A simple traversal of the permutation, keepimg stack for

each label, can perform the node labeling described abdnes the setup

of the ancillary tree can be done®@(n) time. LetS' be the sequence of
inversions applied beforg in § and 52 be the sequence of inversions
applied afters1 (including) in §. Each safe inversion iﬁﬁ2 that is
undone will cos©O(logn) time so the total cost for finding a most recent

unsafe inversion i©(n+ || logn).

Inserting oriented inversions before the unsafe inversion Theorem
3in [19] shows that there always exists two oriented ingarsv1; and
v2; that are valid on the permutation after the unsafe invergjos un-
done in the trace-back phase. According to [19], if invarsidl; andv2;

have the following properties then all the inversions adtied including
K are safe, valid, and can be applied at the end of the sortopgesee

on theit iteration:

— the span of/1; overlaps the span q@f, and
— either the span o#2; overlaps the span ofl; and does not overlap
the span ofy, or the span 092; overlaps the span @f and does not

overlap the span ofl;.

In the following we show how to find1; andv2; in time proportional

to the size of the bad component that we created.

Lemma 3. Given an unsafe oriented inversioygind the bad component
b of size m created by,|one can always find two inversion$ andv2

in O(m) time such that

1. (existenceyl; andvz; are valid sorting inversions when applied after
g.

2. (safety)after applyingvl; andvz;, inversion jrdoes not create b.

3. (validity) after applyingvl; andv2;, inversion jand all the inver-
sions in $ remain valid sorting inversions and can be applied at the

end of the sorting sequence of tHeriun.

Proof. A bad component could have been created in one of three ways
wheny; was applied. Without loss of generality we ignore the synmimet
counterpart to the first case below (both cannot happen &) ove also
ignore the inverted versions of each case where the hurdien has

only negative elements. This leaves us with three casessider.

— (+1g...++Xq.. X *Th T Xk—1- - Xspl Tht1...Th)

-~

where the braced inversion creates the bad component

b=-+X1... X" Xs11... Xk_1*T.
— (T XX XX X X1t 2T
where the braced inversion creates the bad component
b= ++Xg o) X1 e - X1
— The third case is the same as the first, except that one or nagre b

components are created which span the compoheat .. +Xs*Xgy1 ... +Xk_1*T.

For the first case, writé = +l+X1...*Xs @andR = -r-x_1... %11 and
examine the substrindsandR. Since the componert,...,r) is a bad

component, there must exist an elenmtantL such that either+1 ort — 1

IS negative and not ih. Assumew is the first such element we encounter
by scanning froml to +xs. We locate the rightmos{w— 1) or -(w+ 1)

in Rby scanning fromxs, 1 to -r. Now, there are two possibilities.

1. Therightmostelementigw—1). We havev > +1 and thugw, -(w—
1)) is an oriented pair; consequently, there exists an orieimtes-
sion, v1;, which is different fromy;. Now consider the position of
those elements with absolute values between (and includlingd
w— 1. Lety be the element with the smallest value that does not ap-
pear to the left ofv in L (such an element must exist becaliseto
the left ofw butw— 1 is inR). Thusy— 1 must appear to the left of
in L. Not thaty cannot be irR, as this would contradict the fact that
w is the leftmost element ib with -(w+ 1) or -(w—1) in R. Thusy
must be inL and to the right oiw. After applyingvl;, we will have
the oriented paity — 1, -y), and consequently, another oriented inver-
sionv2;. Notice that the span ofl; overlaps the span qf and the
span ofv2; overlaps the span ofl; but not that ofy. So, the required
properties of safety and validity follow from Theorem 3 ir9]1

2. The rightmost element igw+ 1). Note that(w,-(w+ 1)) is an ori-
ented pair, so that there exists an oriented inversiign This inver-
sion must be different frorg; as otherwisé. would a bad component
in itself. Now we examine the substring to the rightwoin L. Letzbe
the element with the largest absolute value in that sulgst@onsider

the following two cases:

(&) The absolute value dfis less tharw: we consider the elements
with absolute values in the intervil Z]. Lety be the element with
the largest absolute valueinz] that appears to the left @f (such
an element must exist becausks to the left ofw butzis to the
right of win L). y+ 1 cannot be irR, as this would contradict the
fact thatw is the leftmost element ib with -(w+ 1) or -(w—1)
in R. Thusy+ 1 must be irL and to the right ofv. After applying
v1;, we will have the oriented paiy, -(y+ 1)), and consequently,
another oriented inversia®;. Notice that the span ofl; overlaps
the span ofy and the span of2; overlaps the span ofl; but not
that of ;. So, the required properties of safety and validity follow

from Theorem 3 in [19].

(b) The absolute value dfis larger tharw+ 1: We consider the ele-
ments with absolute values jnr]. Lety be the element with the
largest absolute value |g r] that appears to the left ofw+1) in
R (such an element must exist becausg to the left of (w+ 1)
in Rbutzis inL). y—1 cannot be to the left oiv in L, as this
would contradict the fact that is the leftmost element ib with
-(w+1) or-(w—1) in R Thusy— 1 must be either to the right of
w in L or to the right of (w+1) in R. If y—1 is to the right ofw
in L, the oriented paif-(y—1),y) defines the oriented inversion
v2;. Notice that the spans ofl; andv2; overlap the span qf; but

v1; andv2; do not overlap. Ify — 1 is to the right of (w+ 1) in

R, after applyingy1;, we will have the oriented paily, -(y— 1)),
and consequently, another oriented inversi@n In this case the
span ofvl; overlaps the span @f and the span of2; overlaps the
span ofvl; but not that of;. So, the required properties of safety

and validity follow from Theorem 3in [19].

For the second case (where the span of the unsafe inversioprigper
subset of the span of the bad component), wlite +l+x;...+x, M =
“Xr—1... Xr1andR=-r-Xx_1... Xs+1. In substrings andR, there must
exist one elemertt such that (t+1) or -(t — 1) is in M and the inver-
sion induced by this pair is n@t. Thus, the oriented pait, -(t — 1))

or (t,-(t+ 1)) defines the oriented inversiari;. Sincevl; is different
from 1, there will be some negative elements after applyihgassume
that the maximum negative element among theny.ighus,y — 1 must

be positive and the oriented pdity, +(y — 1)) defines the other oriented
inversionvz;. It is easy to verify that these inversions have the required

properties.

The linear-time complexity can be achieved by using a lookegtor
that maps each element to its index in the permutation. (iEhsseated
in the beginning and maintained throughout the sorting ggsg Thus,
for the first case, with a single scanlgfwe can findv and-(w— 1) and
with another scan of elements betwéeandw — 1 in the lookup vector,

the pair((y—1),-y). The other cases can be analysed similarly. Note that

in no case do we need to scan any element that is not a phrtldfus

the inversion®1; andv2; can be found irO(m) time.

Appending inversions to the sorting sequence After we get the per-
mutationg; = - 51, we apply the two inversiongl; andv2; ong;. Now
we would like to ensure that the sequence of inversi§nse append
afterv2; does not invalidate the sequerm;eaz. We achieve this by re-
naming the permutatiog in the following way.

By definition, g; - i has at least one bad component createqyby
along with a possibly nonempty sé{(q; - 1) of good components. The
inversions that sort the components®fq; - 1) correspond exactly to
the sequencaz. Thus, our desired sequengeof inversions should only
displace (if at all) such components without affecting tis¢iucture.

Say there is a componeatof lengthm with left frame element.
Thecanonical forme of c is a permutation of lengtm with €[i] = c[i] —

I +1, 1<i <m, wherep|i] denotes théth element of a permutatiop.
Componentg andd are said to batructurally equivalenif and only if

A

we havec=d.

Lemma 4. Let q be a permutation without a bad component and¢

an inversion such that;gu has at least one bad component and a set of
good components @ - 14). There exists ajgvhere any sequencg that
sorts g to the identity, when applied tq,qwill result in a permutation

whose only components are those ifgGL;).

Proof. Rename the permutatioq - |4 such that all breakpoints from
components itG(q; - 1) become non-breakpoints and then upgto get

q. Note that this renaming leaves one structurally equitdded compo-
nent in place of each bad component, so that the renaminggseinA
inversion sequence that sogfsto the identity heals all breakpoints from
the bad components i) - |j; moreover, it does not heal any breakpoint
from components ofj that are inG(q; - 1) due to the nesting property of

FCls.

For example, takg; = (236 7 4-8-5-9 10-1) andp; = p(6,7). Now
G- is(2367458910-1), so thatG(q; - 1) is comprised of the
components framed by the pair (of frame elements) (0,11)tla@gbair
(8,10).q; - i isrenamed taf -y = (1 256 34 7 8 9 10), yielding = (1
256 3-7-48910). The sorting sequen8e= (p(3,6),p(3,4),p(4,7))
for g can be applied to; to get (23456 7 89 10-1).

Lemma 5. Given a permutation p with a set of bad componen(tg)B
permutation f that has one structurally equivalent bad component in
place of each k& B(p) and only non-breakpoints everywhere else, can

be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label i wit
a null value; otherwise label it by the bad component of whiich part
of. Also label adjacencies with the left and right endpoofteach com-

ponent, which can be done in linear time [1, 2]. We use a SRathke top

of which we denote byop(R). Perform the following steps until the end

of the permutation is reached, i.e., until we haven.

1. Label each elemenpt|i] with the valuep/[i — 1] + 1 until an adjacency
corresponding to a bad component is encountered.

2. If the adjacency is a left endpoint, then push oRtihe valuepli —
1] — p/[i — 1] and go to step 3. If it is a right endpoint, then pop the
top element. If the next breakpoint is labeled with a bad coment,
then go to step 3 otherwise go to step 1.

3. Label each element'[i] = pl[i] —top(R) until an adjacency with a

different component label is reached, then go to step 2.

The renaming procedure takes linear time and works coyréettause
every bad component is renamed to a structurally equivatemponent

in step 2.

Overall running time analysis: We call this algorithm, with the recov-
ery phase included, MAX-RECOVER or RAND-RECOVER, depegdin
on whether algorithm MAX or algorithm RAND is used in the fama-
sorting phase. If algorithm MAX or RAND gets stuck at a pagtper-
mutationp;, we proceed by undoing inversions until a permutatipis
found such thaty - iy has fewer bad components thgn Finding such
a g andy alone take®©(n -+ |S?|logn) time. The inversions undone in
this step are not discarded as they can be applied aftetimgat least

two more inversions. Notice that each inversion undoneertitice-back

must be done or undone on a splay tree at most three times arf th
ande2 for any twop; andpj, i # j, must be disjoint. Thus th®(nlogn)
term describes the amount of time spent for undoing invessaver the
entire course of the algorithm and just a linear amount ofkvmyond

that must be done in each recovery phase.

Theorem 3. The running time of MAX-RECOVER or RAND-RECOVER
is O(nlogn+ kn) where k is the total number of unsafe inversions per-

formed in the algorithm.

In Section 6 we show strong empirical evidence that, on ranger-
mutations of lengtin, the average value and standard deviatiok -
main constant (abo@ even a1 grows very large, leading us to conjec-
ture that these algorithms sort almost all permutatior@(imlogn) time.

In the worst case, however, RAND-RECOVER and MAX-RECOVER
can used(n?) time, as in the following family of permutations: build
a permutation of lengtim by starting with the identity permutation of
lengthn mod 5 as the first block, followed by/5 copies of the block
i(i+3)(i+1)-(i+4)-(1+2)(i +5), each of which shares its first element

with the last element of the preceding block.

6 Experimental Results

We present experimental results for algorithms MAX, RANDAK+H
RECOVER and RAND-RECOVER. All of the experiments are on ran-
dom permutations of length 100, 200, 500, 1000, 2000, 50@@0D and

20,000. For each length, we tested our algorithms @00 000 permu-

tations.

Table 1 lists the failure rates for algorithm MAX and algbrmt RAND.
Algorithm MAX and algorithm RAND produce an optimal sortisg-
guence with frequency 61%. We also include the failure rfateRAND-
RESTART: the simple heuristic that runs RAND on the inputnpeta-
tion a second time if it fails to sort at the first attempt. Thiure rate for
RAND-RESTART reduces to 16%+0.39 x 0.39), which suggests that

the two runs are independent with respect to the failure rate

Tables 2 and 3 summarize the details of the number of recovery
steps .k, that we observe in algorithms MAX-RECOVER and RAND-
RECOVER. The average value and the standard deviatidnremain
constant asn grows. Figure 1 shows the distribution kffor MAX-
RECOVER on random permutations of length,Q00. This figure is
representative of the observed distribution for the oteagths as well.
The similarity to the inverse exponential function suggdisat the upper
bound for the average value kfis a constant. Finally, Figure 2 shows
the running time of MAX-RECOVER run on randomly generateghsid
permutations of sizes 100 through,B800, normalized by the running
time of mergesort run on an array of integers of matched 3iae.nor-
malization makes it much easier to discern the asymptohawer—the
ratio displayed should b®(1) and, in particular, it should not show any

tendency to rise am increases. Moreover, normalizing by the running

Proportion of trials
=
1)

[e]

|
o 1 2 7 8 9 10

3 5 6
Number of recovery steps: k

Fig. 1. The distribution ofk for MAX-RECOVER on random permuta-
tions of length 10000.

time of another, well studied procedure that runs in the same re-
gardless of the input data helps in smoothing out small traria due

to the memory hierarchy [10]. Figure 2 supports our conjestas run-
ning time ratios are tightly grouped and remain within theneaange

for all values ofn tested. We also note that MAX-RECOVER runs fast:
our implementation is not fine-tuned in any way and yet sogtsnita-
tions of size 50000 in 2 seconds on one core of a 4-processor, 16-core
Dell PowerEdge R905 with 128GB of memory and 2.2GHz AMD 8354

processors running Linux.

7 Conclusions

We have given two new algorithms for sorting signed pernnnatby in-
versions, one a fast heuristic that works on most permutstithe other
a deterministic algorithm that sorts all permutations a@$O(nlogn)

time on almost all of them. We have given the results of vetgm@sive

Normalized Running Time of RAND-RECOVER
100 T T T T T T T T T

90 E

Normalized Running Time

40 i

30 1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Permutation Length

Fig. 2. Normalized running time of RAND-RECOVER on random per-
mutations of sizes from 100 to S000—shown is the ratio to the running
time of mergesort on arrays of matching size.

experimentation to confirm these claims. We have thus takeajar step
towards a final resolution of the sorting problem. Futurekniacludes
a formal proof that our deterministic algorithm sorts altredpermuta-
tions inO(nlogn) time and designing an algorithm to deal with the few

remaining permutations where our algorithm takes more.time

References

1. D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-timgatithm for inversion distance
with an experimental comparisod. Comput. Biol.8(5):483—-491, 2001.

2. A.Bergeron, S. Heber, and J. Stoye. Common intervals anithg by reversals: a marriage
of necessity. IProc. 2nd European Conf. Comput. Biol. ECCB'62—-63, 2002.

3. A. Bergeron and J. Stoye. On the similarity of sets of peations and its applications to
genome comparison. Froc. 9th Int’l Conf. Computing and Combinatorics (COCOOBY,
Lecture Notes in Comp. S@697, 68—79. Springer Verlag, Berlin, 2003.

4. A. Bergeron, J. Mixtacki, and J. Stoye. Reversal Distamitkout Hurdles and Fortresses.
In Proc. 15th Ann. Symp. Combin. Pattern Matching (CPM,Q4cture Notes in Comp. Sci.
3109, 338—-399. Springer Verlag, Berlin, 2004.

5. A. Caprara. Sorting by reversals is difficult. Bmoc. 1st Int’l Conf. Comput. Mol. Biol.
(RECOMB'97) 75-83, 1997.

6. W.H.E. Day and D. Sankoff. The computational complexitynéerring phylogenies from
chromosome inversion datad. Theor. Biol, 127:213-218, 1987.

7. G. Fertin, A. Labarre, |. Rusu, E. Tannier, and S. Vialetttombinatorics of Genome
RearrangementaMIT Press, 2009.

8. S. Hannenhalli and P.A. Pevzner. Transforming cabbagetumnip (polynomial algorithm
for sorting signed permutations by reversals). Pimc. 27th Ann. ACM Symp. Theory of
Comput. (STOC'951178-189. ACM Press, New York, 1995.

9. H. Kaplan and E. Verbin. Efficient data structures and arawlomized approach for sort-
ing signed permutations by reversals.Aroc. 14th Ann. Symp. Combin. Pattern Matching

(CPM’03), Lecture Notes in Comp. S@676, 170-185. Springer Verlag, Berlin, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B.M.E. Moret and H.D. Shapiro. An empirical assessméatgorithms for constructing a
minimum spanning treeDIMACS Monograph45, 99-117, 1994.

B.M.E. Moret and T. Warnow. Advances in phylogeny retamtsion from gene order and
content data. In E.A. Zimmer and E.H. Roalson, elilecular Evolution: Producing the
Biochemical Data, Part BMethods in Enzymolog§95, 673—700. Elsevier, 2005.

J.D. Palmer. Chloroplast and mitochondrial genomeutiani in land plants. In R. Her-
rmann, ed.Cell Organellespp. 99-133. Springer Verlag, 1992.

J.D. Palmer and W.F. Thompson. Rearrangements in theopltdist genomes of mung bean
and peaProc. Nat'l Acad. Sci., USA78:5533-5537, 1981.

D. Sankoff. Edit distance for genome comparison basembordocal operations. IRroc.
3rd Ann. Symp. Combin. Pattern Matching (CPM'9Rgcture Notes in Comp. S@44,
121-135. Springer Verlag, Berlin, 1992.

D. Sankoff and M. Goldstein. Probabilistic models fongae shuffling.Bull. Math. Biol,
51:117-124, 1989.

D.D. Sleator and R.E. Tarjan. Self-adjusting binarycearees.J. ACM 32(3):652-686,
1985.

A.H. Sturtevant. A crossover reducer in Drosophila medmster due to inversion of a
section of the third chromosom®iol. Zent. Bl, 46:697—702, 1926.

A.H. Sturtevant and Th. Dobzhansky. Inversions in thel tthromosome of wild races of
drosophila pseudoobscura and their use in the study of sheriof the speciefroc. Nat'l
Acad. Sci., USA22:448-450, 1936.

E. Tannier, A. Bergeron, and M.-F. Sagot. Advances otingpby reversals.Disc. Appl.
Math., 155(6—7):881-888, 2007.

E. Tannier and M.-F. Sagot. Sorting by reversals in sabratic time. InProc. 15th
Ann. Symp. Combin. Pattern Matching (CPM’pégcture Notes in Comp. SE109, 1-13.

Springer Verlag, Berlin, 2004.

Figure legends

7.1 Figure 1 - The distribution of

permutations of length 10,000

7.2 Figure 2 - Normalized running time of RAND-RECOVER on ran

dom permutations of sizes from

k for MAX-RECOVER on random

100to 50,000—shown is the

ratio to the running time of mergesort on arrays of matching

size.

Tables

Table 1 - The failure rates for MAX, RAND and RAND+RESTART

Length

10Q

200

500 1,000 2,000 5,000

10,00020,00(

MAX

39.5%

38.9%

39.0% 39.1% 39.3% 39.3%

39.3% 39.2%

RAND

39.0%

39.2%

39.5% 39.5% 39.6% 39.5%

39.6% 39.5%

RAND-RESTART]

17.2 %

17.1 %

16.8 %

16.

4 9%16.3 %916.2 %

16.0 %16.0 %

Table 2 - Number of recovery steps (K) for MAX-RECOVER: Average

and Standard Deviation

Length

10Q

200

500

1,000

2,000

5,000

10,00¢

20,00(

AVE(K)

0.513

0.518

0.5272

0.524

0.524

0.525

0.524

0.525

SD(K)

0.765

0.770

0.7772

0.774

0.773

0.775

0.774

0.777

Table 3 - Number of recovery steps (k) for RAND-RECOVER: Average

and Standard Deviation

Length 100 200 5001,0002,0005,00010,00020,00(¢

AVE(k)|0.4850.4890.4920.4930.4950.495 0.493 0.499

SD(k)0.6900.6940.6910.6970.6980.698 0.698 0.699

