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ABSTRACT

Many important questions in molecular biology, evolution, and biomedicine can be addressed
by comparative genomic approaches. One of the basic tasks when comparing genomes is the
definition of measures of similarity (or dissimilarity) between two genomes, for example, to
elucidate the phylogenetic relationships between species. The power of different genome
comparison methods varies with the underlying formal model of a genome. The simplest
models impose the strong restriction that each genome under study must contain the same
genes, each in exactly one copy. More realistic models allow several copies of a gene in a
genome. One speaks of gene families, and comparative genomic methods that allow this kind
of input are called gene family-based. The most powerful—but also most complex—models
avoid this preprocessing of the input data and instead integrate the family assignment within
the comparative analysis. Such methods are called gene family-free. In this article, we study
an intermediate approach between family-based and family-free genomic similarity mea-
sures. Introducing this simpler model, called gene connections, we focus on the combinato-
rial aspects of gene family-free genome comparison. While in most cases, the computational
costs to the general family-free case are the same, we also find an instance where the gene
connections model has lower complexity. Within the gene connections model, we define three
variants of genomic similarity measures that have different expression powers. We give
polynomial-time algorithms for two of them, while we show NP-hardness for the third, most
powerful one. We also generalize the measures and algorithms to make them more robust
against recent local disruptions in gene order. Our theoretical findings are supported
by experimental results, proving the applicability and performance of our newly defined
similarity measures.
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3Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
4Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
5Department of Computer Science and Engineering, IIT Bombay, Mumbai, India.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 24, Number 6, 2017

# Mary Ann Liebert, Inc.

Pp. 616–634

DOI: 10.1089/cmb.2017.0065

616

D
ow

nl
oa

de
d 

by
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

ed
er

al
e 

(e
pf

l)
 f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
8/

03
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



1. INTRODUCTION

Many important questions in molecular biology, evolution, and biomedicine can be addressed by

comparative genomic approaches. One of the basic tasks when comparing genomes is the definition of

measures of similarity between two genomes. Direct applications of such measures are the computation of

phylogenetic trees or the reconstruction of ancestral genomes, but also more indirect tasks such as the

prediction of orthologous gene pairs (derived from the same ancestor gene through speciation) or the transfer

of gene function across species profit immensely from accurate genome comparison methods.

Indeed, over the past 40-or-so years, many methods have been proposed to quantify the similarity of

single genes, mostly based on pairwise or multiple sequence alignments. However, in many situations,

similarity measures based on whole genomes are more meaningful than gene-based measures, because they

give a more representative picture and are more robust against side effects such as horizontal gene transfer.

Therefore, in this article, we develop and analyze methods for whole-genome comparison, based on the

physical structure (gene order) of the genomes.

The simplest picture of a genome is one where, in a set of genomes under study, orthologous genes have

been identified beforehand, and only groups of orthologous genes (also known as gene families) are

considered that have exactly one member in each genome. In this model, a variety of genomic similarity (or

distance) measures have been studied and are relatively easy to compute (Sankoff, 1992; Hannenhalli and

Pevzner, 1999; Yancopoulos et al., 2005; Bergeron et al., 2009). However, the singleton gene family is a

great oversimplification compared to what we find in nature. Therefore, more general models have been

devised where several genes from the same family can exist in one genome. The computation of genomic

similarities in these cases is generally much more difficult, though. In fact, many problem variants are

NP-hard (Bryant, 2000; Chen et al., 2005; Angibaud et al., 2008; Bulteau and Jiang, 2012; Shao et al., 2015).

Another biological inaccuracy arises from the fact that a gene family assignment is not always without

dispute, because orthology is usually not known but just predicted, and most prediction methods require

some arbitrary threshold, deciding when two genes belong to the same family and when not. Therefore,

gene family-free measures have recently been proposed, based on pairwise similarities between genes

(Doerr et al., 2012, 2014; Braga et al., 2013; Martinez et al., 2015). While the resulting similarity measures

are very promising, their computation is usually not easier than for the family-based models and therefore

NP-hard as well (Doerr et al., 2012; Martinez et al., 2015).

In this article, we study an intermediate approach between family-based and family-free genomic

similarity measures, gene connections. We do this to focus on the combinatorial aspects of gene family-free

genome comparison. Our data structure is slightly less complex than in the family-free approach, where

arbitrary (real-valued) similarities between genes are considered. This intermediate status allows us to

achieve results comparable to those for family-free methods. Whereas in most cases the general family-free

model can be recovered by using arbitrary similarities between genes, we also found one case with lower

computational complexity for the gene connections model.

The article is structured as follows. We first define three new genome similarity measures based on

conserved gene adjacencies (Section 2), followed by some pointers to related literature (Section 3). Each of

the three following sections is then devoted to one of the similarity measures. We show that the first

problem can be computed in polynomial time, but is biologically quite simplistic. The second one, while

avoiding some of the weaknesses of the first, is NP-hard to compute and can therefore not be applied for

genomes of realistic size. The third measure, finally, provides a compromise between biological relevance

and computational complexity. To demonstrate how our similarity measures can be used in practice, we

adapt a method for inferring phylogenetic trees in Section 7. In Section 8, we present experimental results,

using a large data set of plant (rosid) genomes. The last section concludes the article.

The implemented algorithms used in this work as well as the studied data set are available for download

at http://bibiserv.techfak.uni-bielefeld.de/newdist.

2. BASIC DEFINITIONS

An alphabet is a finite set of characters. A string over an alphabet A is a sequence of characters from A.

Given a string S, S[i] refers to the ith character of S and jSj is the length of S, that is, the number of

characters in S. In a signed string S, each character is labeled with a sign, denoted sgnS(i) for the character

at index position i. A sign is either positive ( + ) or negative ( - ). In comparative genomics, for example, the
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signs may indicate the orientations of genes on their genomic sequences, which themselves are represented

as strings. Therefore, in this article, we use the term gene as a synonym for ‘‘signed character’’ and the term

genome as a synonym for ‘‘signed string.’’

Definition 1 (gene connection graph). Given two genomes S and T, a gene connection graph G(S‚ T)

of S and T is a bipartite graph with one vertex for each gene of S and one vertex for each gene of T. An edge

between two vertices, one from S and one from T, indicates that there is some connection between the two

genes represented by these vertices.

The term connection in the above definition is not very specific. Depending on the data set and context,

connections may be defined based on gene homology, sequence similarity, functional relatedness, or any

other similarity measure between genes.

For ease of notation, we let S[i] denote both the ith gene of genome S and the vertex of G representing

this gene. Similar for T[j]. The set of edges of a graph G is denoted by E(G). The size of a graph G is the

number of its edges, jGj = jE(G)j. Furthermore, we define a connection function t that returns for an index

position i of S the list t(i) of index positions in T that are connected to S[i] by an edge in G(S‚ T). That is,

t(i) = [jj(i‚ j) 2 E(G(S‚ T)) for 1 � j � jTj]. The function s(j) for an index position of T is defined analogously.

Commonly, a pair of adjacent index positions (i‚ i0) with i0 = i + 1 in a string is called an adjacency. Note

that this definition of adjacency only considers direct neighborhood of genes (i0 = i + 1), while all our

following uses of this term refer to an extended definition given by Zhu et al. (2009), who introduced

generalized gene adjacencies as follows:

Definition 2 (adjacency). Given an integer h � 1, a pair of index positions (i‚ i0) with i0 � i + h in a

string is a (h-) adjacency.

In other words, two genes of the same genome form a h-adjacency if the number of genes between them

is less than h. In the following, we will frequently differentiate between simple adjacencies (h = 1) and

generalized adjacencies (h � 1).

As mentioned in the Introduction, in this article, we are interested in defining measures of similarity to compare

pairs of genomes. A simple approach is based on their number of conserved adjacencies. Although below we will

study different variants of similarities, they all use the following basic notion of conserved adjacency.

Definition 3 (conserved adjacency). Given two genomes S and T and a gene connection graph G(S‚ T),

a pair of adjacencies (i‚ i0) in S and (j‚ j0) in T is called a conserved adjacency, denoted (i‚ i0jjj‚ j0), if one of

the following two holds:

(a) (i‚ j) 2 E(G(S‚ T)), (i0‚ j0) 2 E(G(S‚ T)), sgnS(i) = sgnT (j) and sgnS(i0) = sgnT (j0); or

(b) (i‚ j0) 2 E(G(S‚ T)), (i0‚ j) 2 E(G(S‚ T)), sgnS(i) 6¼ sgnT (j0) and sgnS(i0) 6¼ sgnT (j).

For an illustration of these definitions, see Figure 1.

We further denote two conserved adjacencies as conflicting if their intervals in either genome are overlapping.

Definition 4 (conflicting conserved adjacencies). Two conserved adjacencies (i‚ i0jjj‚ j0) and (k‚ k0jjl‚ l0)
are conflicting if (1) (i‚ i0jjj‚ j0) 6¼ (k‚ k0jjl‚ l0) and (2) [i‚ i0 - 1] \ [k‚ k0 - 1] 6¼ ; or [j‚ j0 - 1] \ [l‚ l0 - 1] 6¼ ;.

Subsequently, a set of conserved adjacencies is denoted as nonconflicting if the above-defined property

does not hold between any two of its members.

In the example of Figure 1, (3‚ 4jj4‚ 6) and (4‚ 6jj5‚ 7) are the only conflicting conserved adjacencies. All

other pairs are nonconflicting.

The different similarity measures that we consider in this work can be derived from the following three

problem statements:

FIG. 1. Genomic data structure. Gene connection graph of two genomes S = (+a, +b, +c, -d, -e, +f) (top row) and

T = (+t, +u, -v, +w, -x, -y, +z) (bottom row). Conserved 2-adjacencies are (1, 2jj1, 2), (2, 3jj2, 4), (3, 4jj4, 6), and (5,

6jj5, 7). Note that (2, 3jj2, 3) and (4, 5jj6, 7) are no conserved adjacencies because the signs do not match the definition.
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Problem 1 (total adjacency model). Given two genomes S and T and a gene connection graph G(S‚ T),

discover all pairs of index positions (i‚ i0) in S and (j‚ j0) in T that form a conserved adjacency. In other

words, compute adj(S‚ T) = f(i‚ i0‚ j‚ j0)j1 � i < i0 � jSj‚ 1 � j < j0 � jT j and (i‚ i0jjj‚ j0)g:

An immediate similarity measure corresponds to the size of the computed adjacency set. Alternatively,

one may weight adjacencies according to the similarity of their encompassing genes, as proposed by Doerr

et al. (2012), and then compute the sum of their weights. In Section 7, we will further explain how sets of

conserved adjacencies between pairs of genomes can be used in inferring phylogenies.

Because a gene connection graph G(S‚ T) is not limited to one-to-one connections between genes of

genomes S and T, some conserved adjacencies found by solving Problem 1 may biologically not be very

plausible. Therefore, we define a second problem, motivated by the one used by Doerr et al. (2012) and

Braga et al. (2013), which asks for one-to-one correspondences between genes of S and T in its solutions:

Problem 2 (gene matching model). Given two genomes S and T, a gene connection graph G(S‚ T), and

a real-valued parameter a 2 0‚ 1], find a bipartite matching M in G(S‚ T) such that the induced sequences

SM and TM maximize the objective function

F a(M) = a � jadj(SM‚ TM)j+ (1 - a) � jMj :

(The induced sequences SM and TM are the subsequences of S and T, respectively, that contain those

characters incident to edges of M.)

As we will see later in this article, solving Problem 2 is NP-hard even for simple adjacencies. Therefore,

we define a third, intermediate problem, which is more efficient to solve in practice, while producing one-

to-one correspondences between gene extremities. The aim is to find the largest subset of nonconflicting

conserved adjacencies found in a pair of genomes:

Problem 3 (adjacency matching model). Given two genomes S and T and a gene connection graph

G(S‚ T), find a maximum cardinality set of nonconflicting conserved adjacencies C � adj(S‚ T).

3. RELATED WORK

As mentioned above, the gene connection graph input format that we propose here is an intermediate

between gene families and the family-free model. Indeed, we do not require the gene connection graph

to be transitive, which is the main difference to the gene family graph, where vertices are assigned to

genes and edges are drawn between genes from different genomes whenever they belong to the same

family, thus forming bipartite cliques. [This graph has not been introduced under this name in the

literature, but is implicitly mentioned already by Sankoff (1999) and later more explicitly by Doerr

et al. (2012).] On the other end, the gene similarity graph (Braga et al., 2013) is a weighted version of

the gene connection graph, increasing the expression power by its ability to represent different

strengths of gene connections.

The only previous use of such an intermediate model in comparative genomics that we are aware of is in

the form of indeterminate strings by Doerr et al. (2014).

Definition 5 (indeterminate string, signed indeterminate string). Given an alphabet A, a string S

over the power set P(A)nf;g is called an indeterminate string over A. In other words, for 1 � i � n,

; 6¼ S[i] � A. In a signed indeterminate string S, any index position i has a sign sgnS(i), which therefore is

the same for all characters at that position.

Given two genomes S and T and a gene connection graph G(S‚ T), it is easy to create a pair of signed

indeterminate strings S0 and T 0 over an alphabet A0 that contain the same set of conserved adjacencies as S

and T: For any edge e = (S[i]‚ T[j]) of G(S‚ T), create one symbol e0 2 A0 and let e0 2 S0[i] and e0 2 T 0[j].
The signs are just transferred from S and T to S0 and T 0, respectively: sgnS0 [i] = sgnS[i] for all i, 1 � i � jSj,
and sgnT 0 [j] = sgnT [j] for all j, 1 � j � jT j.

Conversely, given two indeterminate strings S0 and T 0, we can easily create sequences S and T and the

corresponding gene connection graph with the same set of conserved adjacencies. Let A = f1‚ 2‚ . . . ‚

jS0j‚ 10‚ 20‚ . . . ‚ jT 0j0g set S = sgnS0[1]1‚ . . . ‚ sgnS0[jS0 j]jS0j‚ T = sgnT 0[1]1
0‚ . . . ‚ sgnT 0[jT 0 j]jT 0j0 and create in

G(S‚ T) an edge e = (S[i]‚ T[j]) whenever S0[i] \ T 0[j] 6¼ ;.

NEW GENOME SIMILARITY MEASURES 619

D
ow

nl
oa

de
d 

by
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

ed
er

al
e 

(e
pf

l)
 f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
8/

03
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Clearly, all the information about conserved adjacencies between these two representations is identical,

while sometimes the graph representation and sometimes the representation as signed indeterminate string

are more concise.

Indeterminate strings by Doerr et al. (2014) were used to identify regions of common gene content (gene

clusters) in two genomes, which is important in functional genomics. Here our focus is on conserved

adjacencies (which can be seen as small clusters of just two genes) for defining whole-genome similarities.

Similar measures are known for singleton gene families as the breakpoint distance (Blanchette et al., 1999;

Tannier et al., 2009) and have been extended to gene families by Sankoff (1999); Bryant (2000); Angibaud

et al. (2008) and were defined for the family-free model by Doerr et al. (2012).

4. AN OPTIMAL SOLUTION FOR PROBLEM 1

To solve Problem 1, we construct a list L of edges of G(S‚ T) using connection function t(i) for

1 � i � jSj. In doing so, we assume that the elements of t(i), 1 � i � jSj, are sorted in increasing order. If

this is not given as input, it can always be achieved by applying counting sort to all lists t(i) in overall

O(jSj + jTj + jG(S‚ T)j) time, which is proportional to the input size.

We present with Algorithm 1 a solution to Problem 1 for simple adjacencies and subsequently extend this

approach for the generalized case. Our algorithm is a simple, linear time procedure that uses three pointers

e, e0, e00 into list L. These pointers simultaneously traverse L while reporting any pair of adjacent parallel

edges (e‚ e0) or crossing edges (e‚ e00).

Algorithm 1

Input: genomes S and T, gene connection graph G(S‚ T)

1: Create a list L of all edges (i‚ j) 2 E(G(S‚ T)) ordered by primary index i and secondary index j

2: Let e0 = (i0‚ j0) and e0 0 = (i00‚ j00) point to the second element of L

3: for each element e = (i‚ j) of L in sorted order do

4: if sgnS(i) = sgnT (j) then

5: while i0 < i + 1 or (i0 = i + 1 and j0 < j + 1) do

6: advance e0 = (i0‚ j0) by one step in L

7: end while

8: if (i0‚ j0) = (i + 1‚ j + 1) and sgnS(i0) = sgnT (j0) then

9: report the conserved adjacency (i‚ i0jjj‚ j0)
10: end if

11: else

12: while i0 0 < i + 1 or (i00 = i + 1 and j0 0 < j - 1) do

13: advance e00 = (i0 0‚ j0 0) by one step in L

14: end while

15: if (i0 0‚ j00) = (i + 1‚ j - 1) and sgnS(i0 0) 6¼ sgnT (j0 0) then

16: report the conserved adjacency (i‚ i00jjj0 0‚ j)

17: end if

18: end if

19: end for

4.1. Correctness

Given a pair (i‚ j) 2 L, there are overall four cases for the signs of index i in S and index j in T, each with

two subcases for the signs of index i + 1 in S and index j + 1 or index j - 1 in T, listed in the following.

(1) If sgnS(i) = + and sgnT (j) = + , then we have a conserved adjacency (i‚ i + 1jjj‚ j + 1) if and only if

(i + 1‚ j + 1) 2 L and either sgnS(i + 1) = + and sgnT (j + 1) = + or sgnS(i + 1) = - and sgnT (j + 1) = - .

(2) If sgnS(i) = + and sgnT (j) = - , then we have a conserved adjacency (i‚ i + 1jjj - 1‚ j) if and only if

(i + 1‚ j - 1) 2 L and either sgnS(i + 1) = + and sgnT (j - 1) = - or sgnS(i + 1) = - and sgnT (j - 1) = + .

(3) If sgnS(i) = - and sgnT (j) = + , then we have a conserved adjacency (i‚ i + 1jjj - 1‚ j) if and only if

(i + 1‚ j - 1) 2 L and either sgnS(i + 1) = - and sgnT (j - 1) = + or sgnS(i + 1) = + and sgnT (j - 1) = - .

(4) If sgnS(i) = - and sgnT (j) = - , then we have a conserved adjacency (i‚ i + 1jjj‚ j + 1) if and only if

(i + 1‚ j + 1) 2 L and either sgnS(i + 1) = - and sgnT (j + 1) = - or sgnS(i + 1) = + and sgnT (j + 1) = + .
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Clearly, cases 1 and 4 and cases 2 and 3 can be summarized to the two cases given in Algorithm 1.

4.2. Runtime analysis

The list L has length jG(S‚ T)j and can be constructed and sorted in linear time O(jSj + jT j + jG(S‚ T)j), as

discussed above. Each of the three edge pointers e, e0, and e00 traverses L once from the beginning to the

end, so that the for loop in lines 3–19 takes O(jLj) time. Therefore, the overall running time is

O(jSj + jT j + jG(S‚ T)j).

4.3. Space analysis

The algorithm needs space only for the two input strings S and T, the list L, and some constant-space

variables. Therefore, the space usage is of order O(jSj + jT j + jG(S‚ T)j).

4.4. Extension to generalized adjacencies

Algorithm 10 solves Problem 1 for generalized adjacencies. Following the same strategy as Algorithm 1,

the extension requires next to the main pointer e additional 2h pointers into list L that are denoted e0t and e00t,
1 � t � h. While it traverses through each element (i‚ j) in the list using pointer e, each pointer e0t,
1 � t � h, is subsequently increased to point to the smallest element larger than or equal to (i + t‚ j + 1) in L.

A copy ê of pointer e0t is then used to find candidates (i + t‚ j + 1)‚ . . . ‚ (i + t‚ j + h). Likewise, pointers e00t,
1 � t � h, are incremented to the smallest element larger than or equal to (i + t‚ j - h), whereupon copy ê of

e00t is used to find candidates (i + t‚ j - h)‚ . . . ‚ (i + t‚ j - 1).

Algorithm 10

Input: genomes S and T, gene connection graph G(S‚ T), gap threshold h
1: Create a list L of all edges (i‚ j) 2 E(G(S‚ T)) ordered by primary index i and secondary index j

2: Let e0t = (i0t‚ j0t) and e0 0t = (i0t‚ j0t), 1 � t � h, point to the second element of L

3: for each element e = (i‚ j) of L in sorted order do

4: if sgnS(i) = sgnT (j) then

5: for each e0t = (i0t‚ j0t), 1 � t � h do

6: while i0t < i + t or (i0t = i + t and j0t < j + 1) do

7: advance e0t = (i0t‚ j0t) by one step in L

8: end while

9: let ê = ({̂‚ |̂))e0t
10: while{̂ = i + t and |̂ � j + h do

11: if sgnS({̂) = sgnT (|̂) then

12: report the conserved adjacency (i‚ {̂jjj‚ |̂)
13: end if

14: advance ê = ({̂‚ |̂) by one step in L

15: end while

16: end for

17: else

18: for each e00t = (i0 0t‚ j0 0t ), 1 � t � h do

19: while i0 0t < i + t or (i0 0t = i + t and j0 0t < j - h) do

20: advance e0 0t = (i0 0t‚ j0 0t ) by one step in L

21: end while

22: let ê = ({̂‚ |̂))e0 0t
23: while {̂ = i + t and |̂ < j - 1 do

24: if sgnS({̂) 6¼ sgnT (|̂) then

25: report the conserved adjacency (i‚ {̂jj|̂‚ j)

26: end if

27: advance ê = ({̂‚ |̂) by one step in L

28: end while

29: end for

30: end if

31: end for
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All pointers e, e0t, and e00t , 1 � t � h are continuously increased, and thus, each traversing L once. Any

instance of pointer ê visits at the most h elements in each iteration, thus leading to an overall running time

of O(jSj + jT j + h2jG(S‚ T)j). The running time is asymptotically optimal in the sense of worst case analysis,

since there can be just as many h-adjacencies in graph G(S‚ T). Algorithm 10 requires O(h + jSj + jT j +
h2jG(S‚ T)j) space.

5. COMPLEXITY OF PROBLEM 2

While one may hope that the intermediate status of the gene connection graph between the gene family

graph and the gene similarity graph generally allows more efficient algorithms than for the more complex

gene similarity graph, this is not the case for the gene matching model.

Only for a = 0, we have F a(M) = jMj and therefore Problem 2 reduces to computing a maximum bipartite

matching, which is possible in polynomial time (Hopcroft and Karp, 1973). However, this case is not very

interesting because it completely ignores conserved adjacencies and just compares the gene content of the

two genomes. All interesting cases are more difficult to solve, as the following theorem shows1:

Theorem 1. Problem 2 is NP-hard for 0 < a � 1.

Proof. We will focus on simple adjacencies (h = 1), as this is sufficient to prove Theorem 1. Inspired by

the proof of Bryant (2000) for the family-based case, we provide a P-reduction from Vertex Cover: Given

a graph G = (V‚ E) and an integer k, does there exist a subset V 0 � V such that jV 0j = k and each edge in E is

adjacent to at least one vertex in V 0?
Our reduction transforms an instance of Vertex Cover into an instance of the decision version of

Problem 2: Given strings S and T, a gene connection graph G(S‚ T), a real value a, 0 < a � 1, and a real

value F � 0, does there exist a bipartite matching M in G(S‚ T) such that F a(M) � F?

Let G = (V‚ E) and k be an instance of Vertex Cover with V = fv1‚ v2‚ . . . ‚ vng and E =
fe1‚ e2‚ . . . ‚ emg. Then, we construct an alphabet A of size 2n + 4m + 2 given by

A= V [ fvi
0jvi 2 Vg [ E [ fei

0jei 2 Eg [ fxi‚ xi
0j1 � i � m + 1g:

The two genomes S and T are constructed as follows:

S = v1v01v2v02 . . . vnv0nx1x01e1e01x2x02e2e02x3x03 . . . xmx0meme0mxm + 1x0m + 1‚

and

T = xm + 1x0m = 1xmx0m . . . x2x02x1x01vnEnv0nvn - 1En - 1v0n = 1 . . . v1E1v01‚

where Ei is a string of the symbol pairs ejej
0 for the edges ej that are adjacent to vi. The gene connection

graph G(S‚ T) has an edge for each pair of identical symbols S[i] and T[j]. The parameter a may be chosen

arbitrarily within the range 0 < a � 1.

First, we show that among the matchings maximizing the value F a for this problem, there is always at

least one that is a maximal matching. Let M be a nonmaximal matching in G(S‚ T) maximizing F a and

consider an edge ‘ =2M that may be added to M, forming a new matching M0 = M [ f‘g. Clearly, ‘ can

dismiss at most two adjacencies of M in M0, so jadj(M0)j � jadj(M)j - 2. However, in our construction, where

the symbols of A (except the ei and ei
0) are in reverse order in S related to T, and furthermore each ei and

each e0i is between xi and xi + 1 in S, any new edge ‘ added to M can dismiss at most one adjacency: If ‘ is

adjacent to a symbol a and the symbol a0 is adjacent to another edge ‘0 2 M (or vice versa) then

jadj(M0)j = jadj(M)j + 1. Moreover, if two partner edges ‘‚ ‘0 =2M are added to M and thus M0 = M [ f‘‚ ‘0g,
then jadj(M0)j � jadj(M)j and jM0j = jMj + 2. Therefore, F a(M0) > F a(M) for a < 1 and F a(M0) � F a(M)

for a = 1.

1A weaker result, namely the NP-hardness of Problem 2 for values of a between 0 and 1/3, can be found in Doerr
(2015).

622 DOERR ET AL.

D
ow

nl
oa

de
d 

by
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

ed
er

al
e 

(e
pf

l)
 f

ro
m

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
8/

03
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Next, we show that there is a vertex cover of size k for a graph G if and only if Problem 2 has a solution

with F = a(2m + 1 + (n - k)) + (1 - a)(2n + 4m + 2). Note that by construction of S, T, and G(S‚ T), conserved

adjacencies in a maximal matching are only possible between pairs of the same symbol of A, that is, viv
0
i,

eie
0
i, or xixi

0. Therefore, we can simplify the notation and represent a conserved adjacency (i‚ i0jjj‚ j0) by the

pair of elements in S, S[i]S[i0]. Clearly, any maximal matching of G(S‚ T) has jSj = 2n + 4m + 2 edges.

Moreover, any maximal matching realizes at least the 2m + 1 conserved adjacencies eie
0
i and xixi

0. The other

possible conserved adjacencies are the vivi
0. If there exists a solution with value F = a(2m + 1 +

(n - k)) + (1 - a)jSj, then there are at least n - k conserved adjacencies involving vivi
0. These adjacencies are

possible if the respective edges of G are covered by k vertices. If we do not have a solution for F, then G
does not have a vertex cover of size k. -

Solving Problem 2 for simple adjacencies, we make use of a method described by Doerr (2015), which

was originally developed for solving the gene family-free variant of Problem 2. In doing so, it constructs an

integer linear program (ILP) similar to program FFAdj-Int described by Doerr et al. (2012). It includes a

preprocessing algorithm that identifies small components in gene similarity graphs that are part of an

optimal solution. This approach enables the computation of optimal solutions for small- and medium-sized

gene similarity graphs. However, as the method is specifically tailored for gene family-free analysis, it does

not perform very efficiently on gene connection graphs, as we will see in Section 8. We refer to this ILP and

its preprocessing step as Algorithm 2.

We further believe it will be difficult to develop a practical algorithm solving Problem 2 for generalized

adjacencies.

6. EXACT SOLUTIONS AND COMPLEXITY OF PROBLEM 3

We present a polynomial time algorithm solving Problem 3 for simple adjacencies, before showing the

hardness of the general case. Our algorithm makes use of the following graph structure:

Definition 6 (adjacencies graph). Given two genomes S and T and a set C of conserved adjacencies

between S and T, C = f(i1‚ i01jjj1‚ j01)‚ . . . ‚ (in‚ i0njjjn‚ j0n)g, the adjacencies graph AC(S‚ T) is a bipartite graph

with one vertex for each gene adjacency (i‚ i0) of S and (j‚ j0) of T, respectively. The edges correspond to the

conserved adjacencies in C.

Pseudocode of our algorithm solving Problem 3 for simple adjacencies is shown in Algorithm 3.

Algorithm 3

Input: genomes S and T, gene connection graph G(S‚ T)
1: Let C be the set of conserved adjacencies reported by Algorithm 1 applied to S, T and G(S‚ T)
2: Construct the adjacencies graph AC(S‚ T)
3: Compute a maximum bipartite matching M on AC(S‚ T)
4: return M

Clearly its running time is dominated by the time to compute a maximum matching in line 3, which

in unweighted bipartite graphs with n vertices and m edges is possible in O(m
ffiffiffi
n
p

) time (Hopcroft and Karp,

1973). In our case, n = jSj + jT j - 2 and m � n2, therefore Algorithm 3 takes overall O((jSj + jT j)5=2) time.

6.1. Extension to generalized adjacencies

Other than for the first two problems, the properties of Problem 3 change drastically when generalized

adjacencies are considered. Because a h-adjacency corresponds to an interval of up to h + 1 consecutive

genes, the intervals of two h-adjacencies for h � 2 can overlap on more than two genes, or even be

contained in one another. In fact, we will show below that Problem 3 becomes NP-hard in the general case.

First, however, we propose an exact solution to the problem; Algorithm 30 follows the same strategy as its

counterpart for simple adjacencies. While for the latter it was possible to find a maximum subset of

nonconflicting h-adjacencies using a maximum matching approach, for the general case we need to resort to

an ILP, described in Algorithm 30.1. It makes use of two types of binary variables, a(i‚ j) for each edge (i‚ j)
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in gene connection graph G(S‚ T), and b(i‚ i0‚ j‚ j0) for each h-adjacency (i‚ i0jjj‚ j0) in the generalized

adjacency set Ch. We say a binary variable is saturated if it is assigned value 1. While maximizing the

number of saturated b(:) variables (which represents the output of the program), our ILP imposes matching

constraints (C.01) for the set of edges in selected h-adjacencies. Further constraints (C.02)ensure that for

each h-adjacency (i‚ i0jjj‚ j0), (1) both edges between its corresponding genes are saturated and (2) no

saturated edge is incident to a gene in interval [i + 1‚ i0 - 1] of genome S (i.e., a possibly empty interval

corresponding to all genes between i and i0) and interval [j + 1‚ j0 - 1] of genome T, respectively.

Algorithm 30

Input: genomes S and T, gene connection graph G(S‚ T), gap threshold h
1: Let Ch be the set of conserved adjacencies reported by Algorithm 10 applied to S, T, and G(S‚ T)
2: Compute a maximum cardinality set of nonconflicting conserved h-adjacencies C?

h � Ch using the ILP given

in Algorithm
3: return C?

h

Algorithm 30.1 ILP solving Step 2 in Algorithm 30

Objective:

maximize
P

(i‚ i0jjj‚ j0 0)2Ch

b(i‚ i0‚ j‚ j0)

Constraints:

(C.01) for each i)1 to jSj‚
P

j2t(i)

a(i‚ j) � 1

for each j)1 to jT j‚
P

i2s(j)

a(i‚ j) � 1

(C.02) for each (i‚ i0jjj‚ j0) 2 Ch
if sgnS(i) = sgnS(i0) then

2 � b(i‚ i0‚ j‚ j0) - a(i‚ j) - a(i0‚ j0) � 0
otherwise

2 � b(i‚ i0‚ j‚ j0) - a(i‚ j0) - a(i0‚ j) � 0
end if

for each {̂)[i + 1‚ i0 - 1] and each |̂ in t({̂)
b(i‚ i0‚ j‚ j0) + a({̂‚ |̂) � 1

for each |̂)[j + 1‚ j0 - 1] and each {̂ in s(|̂)
b(i‚ i0‚ j‚ j0) + a({̂‚ |̂) � 1

end for

Domains:

(D.01) for each (i‚ j) 2 E(G(S‚ T))‚ a(i‚ j) 2 f0‚ 1g
(D.02) for each (i‚ i0jjj‚ j0) 2 Ch‚ b(i‚ i0‚ j‚ j0) 2 f0‚ 1g

Hardness of Problem 3 for generalized adjacencies. Here we show that the following decision version

of Problem 3 is NP-complete:

Problem 4 (S2-AMM). Let S and T be genomes such that sgnS(i) = sgnT (j) for each i‚ j. Given the gene

connection graph G(S‚ T) and an integer k, determine whether there is a set of nonconflicting conserved

adjacencies C for h = 2 such that jCj � k.

Clearly, hardness of Problem 4 implies that solving Problem 3 is NP-hard even if in the genomes all

genes have the same sign or if h = 2.

In what follows, we denote the literals of a Boolean variable V by v and :v and we say that the first is

positive and the second is negative, and one is the opposite of the other. In a Boolean formula (V‚ C), where

V = fV1‚ . . . ‚ Vng is a set of variables and C is a set of clauses, an interpretation of V is a set of literals

X = fx1‚ . . . ‚ xng where xi 2 fvi‚:vig. We say that X satisfies C if every clause in C has a literal in X . The

Boolean satisfiability problem (SAT) is to decide if there exists an interpretation for a given Boolean

formula.

Like SAT, a restricted version with three variables per clause and where each variable appears at most

three times and each literal at most twice in a formula is NP-complete (see Papadimitriou, 2003, p. 183).

So, as a direct corollary of this last version, we have that the following problem is also NP-complete.
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Problem 5 (2L-SAT). Given a Boolean formula (V‚ C) where each literal appears in at most two

clauses, determine whether there is an interpretation of V that satisfies C.

This problem, finally, can be reduced to S2-AMM, as shown in the proof of the following theorem.

Theorem 2. S2-AMM is NP-complete.

Proof. We denote the concatenation of n copies of a string x by xn and the concatenation of x1‚ . . . ‚ xn by

(xi)
n
i = 1.

Given a Boolean formula

(V = fV1‚ . . . ‚ Vng‚ C = fC1‚ . . . ‚ Cmg)‚

as an instance of 2 L-SAT, we consider an alphabet

A =V [ C [ fpiji = 0‚ 1‚ . . . ‚ 4(n + m - 1) + 1g[
fvi

1‚ vi
2‚ �vi‚:vi

1‚:vi
2ji = 1‚ . . . ‚ ng [ fqiji = 1‚ . . . ‚ 2(n - 1)g‚

and define the following genomes over A that have only positive genes:

S = p0 ViPi

� �n

i = 1
CiPn + ið Þm - 1

i = 1 Cmp4(n + m - 1) + 1‚

where Pi = p4(i - 1) + j

� �4

j = 1
and

T = vi
1vi

2�vi:vi
1:vi

2q2i - 1q2i

� �n - 1

i = 1
vn

1vn
2�vn:vn

1:vn
2:

The edges in ES and EC we describe next are used as connections that define with S and T a gene

connection graph G(S‚ T).

First, we have

ES = f(pj‚ vi
1)‚ (pj + 1‚ �vi)‚ (pj‚ �vi)‚ (pj + 1‚:vi

2)ji = 1‚ . . . ‚ n and j = 4(i - 1)g:

The conserved 2-adjacencies induced by edges in ES are (pj‚ pj + 1jjvi
1‚ �vi) and (pj‚ pj + 1jj�vi‚:vi

2) for each i

and j = 4(i - 1). We say that they cover variable Vi: the first covers the literal vi and the second covers the

literal :vi. Notice that two different conserved adjacencies covering variables V and V 0 are nonconflicting if

and only if V 6¼ V 0.
Second, we describe EC. For each literal v appearing in clause Cj, let r = 4(n + j - 1) and consider all of the

cases: (a) if v is positive and there is no k < j, such that v appears in Ck, add edges (pr‚ v1) and (pr + 1‚ v2);

(b) if v is positive and there is k < j, such that v appears in Ck, add edges (pr‚ v2) and (pr + 1‚ �v); (c) if v is

negative and there is no k < j, such that v appears in Ck, add edges (pr‚ �v) and (pr + 1‚:v1); (d) if v is

negative and there is k < j, such that v appears in Ck, add edges (pr‚:v1) and (pr + 1‚:v2). So, for each

literal in clause Cj, we have one conserved 2-adjacency (pr‚ pr + 1jjv1‚ v2), (pr‚ pr + 1jjv2‚ �v), (pr‚ pr + 1jj�v‚:v1),

or (pr‚ pr + 1jj:v1‚:v2) depending on the case; and there is no other conserved 2-adjacency induced by

edges in EC. We say that a conserved adjacency induced by the edges added above covers clause Cj and, in

cases (a) and (b), we also say that it covers literal v and, in cases (c) and (d), it covers literal :v. Notice that

if two conserved adjacencies cover different clauses, they are nonconflicting.

Notice that there is no 2-adjacency in S induced by one edge in ES and one edge in EC, which implies that

there is no conserved 2-adjacency induced by an edge in ES and an edge in EC.

Figure 2 shows an example of our construction of a gene connection graph from an instance of 2L-SAT.

Clearly, S, T, and G(S‚ T) can be obtained from (V‚ C) in polynomial time. Now we are going to show

that 2L - SAT(V‚ C) = S2 - AMM(G‚ n + m) to complete the proof, that is, we are going to show that

2L - SAT(V‚ C) = true if and only if S2 - AMM(G‚ n + m) = true.

Suppose that 2L - SAT(V‚ C) = true. Then, there is an interpretation X = fx1‚ x2‚ . . . ‚ xng of V where xi

is a literal of Vi and X satisfies C. Let A = fa1‚ . . . ‚ ang and B = fb1‚ . . . ‚ bmg be sets of conserved

adjacencies in G(S‚ T), where ai covers the variable Vi and the literal opposite to xi for i = 1‚ . . . ‚ n, and bj

covers Cj and a literal x 2 X of Cj (whose existence is guaranteed by the hypothesis) for each j = 1‚ . . . ‚ m.

Let a 6¼ b 2 A [ B. We are going to show that a and b are nonconflicting. If a and b are both in A (B), then a

and b are nonconflicting conserved adjacencies because a and b cover different variables (clauses). Suppose
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that a 2 A and b 2 B. Since a covers a variable and b covers a clause, a and b cover disjoint intervals in S.

If a and b cover literals from different variables, they also cover disjoint literals in T, which implies that a

and b are nonconflicting. So, we assume that a and b cover the literals from the same variable. However, in

this case, by construction, a and b cover opposite literals, which implies that even in this case a and b are

nonconflicting. Since A [ B is a set of nonconflicting conserved adjacencies and jA [ Bj = n + m‚ we have

that S2 - AMM(G‚ n + m) = true.

Suppose that S2 - AMM(G‚ n + m) = true. Let R be a set of n + m nonconflicting conserved adjacencies.

Since jV j = n, jCj = m, jRj = n + m, two nonconflicting conserved adjacencies do not cover the same variable

and the same clause, and since all conserved adjacencies cover a variable or a clause, it follows that all

variables and clauses are covered by conserved adjacencies from R and each is covered only once. Let X be

a set of literals such that x 2 X if the opposite to x is covered by a conserved adjacency that covers a

variable in V. Since all variables are covered by conserved adjacencies from R and they are covered only

once, it follows that X is an interpretation of V. Let C 2 C. Since all clauses are covered by conserved

adjacencies from R, it follows that there is an a 2 R, such that a covers C. Let l be a literal covered by a and

V its corresponding variable. Let l0 2 X such that l0 is a literal of V. There is b 2 R such that b covers V and

the opposite to l0. Since a‚ b are nonconflicting, we have that l and the opposite to l0 are different. Since l

and l0 are both literals from V, it follows that l = l0. Since there is a literal l 2 C such that l 2 X for each

C 2 C, we have that X satisfies C. Therefore, 2L - SAT(V‚ C) = true. -

7. INFERRING PHYLOGENIES

We now describe an approach for reconstructing evolutionary trees based on solutions to the three

problems discussed above. To this end, we adapt a gene family-based approach for reconstructing phy-

logenies with gene order data described by Lin et al. (2013). The aim is to obtain a maximum likelihood

(ML) tree subject to a simple Markov model explaining commonalities and differences in the gene order

sequences of our genomic data set. The actual inference is made using RAxML (Stamatakis, 2006), a

popular tool for reconstructing phylogenies with ML.

In constructing the model, Lin et al. decompose gene order sequences into two binary characteristics, the

presence of adjacencies and occurrence of gene families in each genome of the data set. Hence, the

genomic data set is represented by a 0/1 matrix, in which each row corresponds to a distinct genome. There

are two types of columns arranged in separate sections of the matrix. The first part is associated with

adjacencies, the remainder with gene content. Henceforth, we will refer to adjacency columns and gene

content columns, respectively. As Lin et al. rely on gene family assignments, each gene is represented by its

gene family identifier rather than by its index position. Thus, each adjacency column corresponds to an

adjacency between any two genes of certain relative orientation associated with a particular pair of gene

families.

FIG. 2. An example of the reduction scheme. We construct a gene connection graph from the instance of 2L-SAT

(V = fX‚ Y‚ Zg‚ C = fC1‚ C2‚ C3g), where C1 = fx‚ y‚ zg, C2 = f:x‚ y‚:zg, and C3 = f:x‚:y‚ zg. Since 2L-SAT

(V‚ C) = true and jVj = 3 and jCj = 3, we can find 3 + 3 = 6 nonconflicting conserved 2-adjacencies that are marked as

shaded polygons.
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A column in the 0/1 matrix is informative if its entries are neither all 1s nor all 0s. For constructing an

ML tree, RAxML relies entirely on informative columns, and hence, noninformative columns will be

discarded. Clearly, for a data set with n gene families, there are up to n gene content columns and up to n2

adjacency columns, through which each row will have up to n 1s in the gene content and adjacency

columns, respectively.

In the following we describe how sets of conserved adjacencies in the gene connections model can be used

to construct 0/1 matrices similar to Lin et al.’s. We show how adjacency sets translate into adjacency columns

and how gene connections give rise to gene content columns. We relate between genes and adjacencies across

all genomes in the data set using the connected components of the graphs defined in the following.

Definition 7 (joint gene connection graph; joint adjacencies graph). The joint gene connection graph

G(S) = (V‚ E) of a set of m genome sequences S = fS1‚ . . . ‚ Smg is an m-partite graph, where each position

i, 1 � i � jSkj, for each genome Sk, 1 � k � m, is associated with a vertex (k‚ i) 2 V. Any two vertices

(k‚ i)‚ (l‚ j) 2 V, k 6¼ l, share an edge in E if their corresponding genes Sk[i] and Sl[j] have some connection.

Similarly, for a given set of m genome sequences S = fS1‚ . . . ‚ Smg and any (sub-) set of pairwise

conserved adjacency sets C = fCk‚ lj1 � k < l � mg, the joint adjacencies graph AC(S) = (V‚ E) is an

m-partite graph where each adjacency (i‚ i0) in a genome Sk, 1 � k � m, is associated with a vertex

(k‚ i‚ j) 2 V. Edge set E corresponds to conserved adjacencies (i‚ i0jjj‚ j0) 2 Ck‚ l, where Ck‚ l 2 C and

1 � k < l � m.

Gene content columns are generated from connected components of the joint gene connection graph

over all genomes of the data set, or from its subgraph, as for Problem 2 or Problem 3. Each connected

component then corresponds to one or more columns in the 0/1 matrix, according to the maximum number

of its genes associated with the same genome. These columns are filled from left to right with as many 1s as

there are genes associated with each genome within the connected component. The outcome of Problem 2

is a gene matching that directly translates into a subgraph of the joint gene connection graph suitable for

generating gene content columns.

The adjacency matching that is outcome of Problem 3 requires more elaborate treatment to generate gene

content columns of a 0/1 matrix. Clearly, genes that are part of matched adjacencies induce a subgraph of

the joint gene connection graph whose connected components can again be encoded into gene content

columns. Yet, if gene orders are sufficiently perturbed, many genes will not participate in conserved

adjacencies. Rather than ignoring possibly large parts of the joint gene connection graph in constructing

gene content columns, we define additional columns from connected components of a further subgraph

induced by the set of genes that are not contained in matched adjacencies.

For Problem 1, adjacency columns are generated from connected components of the joint adjacencies

graph AC(S) over the set of pairwise conserved adjacencies C = fadj(Sk‚ Sl)jfSk‚ Slg � Sg. Conversely, for

Problem 2 and Problem 3, only the subsets of conserved adjacencies are considered that are also part of

their corresponding matchings.

We then follow the approach by Lin et al. of adjusting the transition probabilities of the two-state time

reversible model that is subject to RAxML’s ML tree inference.

7.1. Extension to general gene family-free model

We proceed to outline an approach for the general gene family-free model that we will later use (next

to the approach described above) for reconstructing the phylogeny of the rosid data set. The general

family-free model allows for arbitrary similarities between genes that are given as strictly positive edge

weights in a gene similarity graph. In addition, we define a weighted adjacencies graph whose edge

weights correspond to adjacency scores as described by Doerr et al. (2012). We then rely on a set of user-

defined threshold values. For each threshold value, we prune the joint adjacencies graph and the joint

gene similarity graph, respectively, by removing edges that fall below the threshold. The connected

components of each of these graphs give rise to columns in the 0/1 matrix, as described above. Thus, with

increasing threshold value, connected components split up into smaller components. The sequence of

threshold values leads to a series of pruned graphs. This results in a redundant encoding of gene order

information in the 0/1 matrix where connected components with high weights are associated with more

columns than faint ones.
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8. EXPERIMENTAL RESULTS

8.1. Genomic data set

We study genomes of 18 rosid species listed in Table 1. Rosids are a prominent subclass of flowering

plants to which also many agricultural crops belong. The genomic sequences of the studied species were

obtained from Phytozyme (Goodstein et al., 2012)2, an online resource of the Joint Genome Institute

providing databases and tools for comparative genomics analyses of plant genomes. Most of the studied

plant genomes are partially assembled, comprising up to 5000 scaffolds covering one or more annotated

protein coding genes. While the smallest genome in our data set contains roughly 24,500 genes, the largest

spans with 56,000 genes more than twice as many. Rosids, just like many other plants, met their evolu-

tionary fate through multiple events of whole-genome duplication, followed by periods of fractionation, in

which many duplicated genes were lost again.

8.2. Construction of gene connection and gene family graphs

Next to the genomic sequences and gene annotations, Phytozyme also provides gene family information

in the form of co-orthologous clusters computed by InParanoid (Sonnhammer and Östlund, 2015). In-

Paranoid follows a seed-based strategy by identifying pairs of orthologous genes (the ‘‘seeds’’) through

reciprocal best pairwise local alignment hits computed by the BLASTP program (Camacho et al., 2008).

These are subsequently used to recruit inparalogs, eventually forming groups of co-orthologous genes.

We ran BLASTP on all genes of our data set using an e-value threshold of 10 - 5 and otherwise default

parameter settings. We then constructed gene connection graphs for all 153 genome pairs by establishing

edges between vertices whose corresponding genes share reciprocal BLASTP hits. We refer to these graphs

as BLASTP GC graphs. Similarly, we constructed pairwise gene family graphs using InParanoid’s ho-

mology assignment, which we refer to as InParanoid GF graphs.

Unsurprisingly, the BLASTP GC graphs are much larger in size than the InParanoid GF graphs. We

observed average sizes of 150,000 edges for the former, whereas the latter graphs had on average of only one-

fifth of this size. Moreover, only 4% of edges in InParanoid GF graphs were not contained in their BLASTP

GC counterparts. Lacking ground truth of homologies in our data set, we take a conservative stance by

assuming that InParanoid’s homology assignment can be considered true, or, in other words, that it contains

Table 1. Biological Data

Species Version No. of genes No. of scaffolds References

Arabidopsis thaliana TAIR10 27,416 7 Lamesh et al., 2011

Brassica rapa FPSc v1.3 40,492 669 Goodstein et al., 2012

Boechera stricta v1.2 27,416 854 Goodstein et al., 2012

Citrus clementina v1.0 24,533 94 Wu et al., 2014

Capsella rubella v1.0 26,521 123 Slotte et al., 2013

Eucalyptus grandis v1.1 36,376 1315 Bartholomé et al., 2015

Eutrema salsugineum v1.0 26,351 61 Yang et al., 2013

Fragaria vesca v1.1 32,831 8 Shulacv et al., 2011

Glycine max Wm82.a2 56,044 147 Schmutz et al., 2010

Gossypium raimondii v2.1 37,505 133 Paterson et al., 2012

Linum usitatissimum v1.0 43,471 1028 Wang et al., 2012

Medicago truncatula Mt4.0v1 50,894 1033 Young et al., 2011

Prunus persica v1.0 27,864 59 Verde et al., 2013

Populas trichocarpa v3.0 41,335 379 Du et al., 2015

Phaseolus vulgaris v1.0 27,197 91 Schmutz et al., 2014

Ricinus communis v0.1 31,221 4962 Chan et al., 2010

Theobroma cacao v1.1 29,452 99 Motamayor et al., 2012

Vitis vinifera Genoscope.12X 26,346 33 Jaillon et al., 2007

The genomic data set of 18 rosid species used in subsequently described experiments.

2The described experiments were performed on data sets of Phytozyme v10.3.
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only a negligible number of false positives. However, we conclude from a previous study by Lechner et al.

(2014), in which InParanoid (as well as all other gene family prediction tools in that study) exhibited a poor

recall, that the homology assignment may be incomplete. That being said, we regard the edges of BLASTP

GC graphs with suspicion. In doing so, we assume many of them leading to false-positive homology

assignments. We perform subsequent analysis to outline a possible procedure of identifying additional

potential homologies that are supported by conservation in gene order in BLASTP GC graphs.

8.3. Implementation

We implemented Algorithms 1, 10, 3, and 30 in Python. For Algorithm 2 we used the implementation of

Doerr (2015). In Algorithm 3, the maximum cardinality matching was computed using an implementation

of Hopcroft and Karp’s algorithm (Hopcroft and Karp, 1973) provided by the Python-based NetworkX3

library. The ILPs of Algorithms 2 and 30 were run using CPLEX,4 a solver for various types of linear and

quadratic programs. All computations were performed on a Linux machine using a single 2.3 GHz CPU.

8.4. Running times

The runtimes of Algorithms 1 and 3 are shown in Figure 3 (left). The runtime analysis was repeated five

times and is visualized by whisker plots. For each of the 153 BLASTP GC graphs in our data set, the

computation was finished in less than 50 CPU seconds. Moreover, our evaluation reveals that the enu-

meration of the set of conserved adjacencies in our data set requires often more time than the subsequent

computation of the maximum matching for Algorithm 3. The plot on the right side of Figure 3 shows that

the runtimes of Algorithm 10 for h = 2‚ 3‚ 4 increase only moderately for higher values of h.

Comparing our methods to the gene family-free approach, an implementation of a heuristic method

described by Doerr et al. (2012) failed to return a result for the gene family-free variant of Problem 2 on the

BLASTP GC graph of R. communis and V. vinifera within 36 hours of computation. Surprisingly, running

Algorithm 2 with a = 0:1 just as long, we were able to obtain a suboptimal solution of which CPLEX

reported an optimality gap of only 1.89%. Nevertheless, as a reference for comparison with our various

models, it would be even more informative to have optimal solutions of these problems. We leave it as an

open problem whether it is possible to improve our ILPs to achieve this.

Furthermore, we were able to compute exact results for Problem 3 and h = 2 with Algorithm 30 for all 153

but 19 BLASTP GC graphs and for all but 16 InParanoid GC graphs, limiting computation time to 2 hours

per graph instance.

FIG. 3. Runtime benchmarks. Left: Runtimes of Algorithms 1 and 3 for all 153 BLASTP GC graphs of the studied

data set. Right: Runtimes of Algorithm 10 for h = 2‚ 3‚ 4.

3http://networkx.github.io
4www.ibm.com/software/integration/optimization/cplex-optimizer
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8.5. Gene connection versus gene family graphs

The overlap between sets of conserved adjacencies identified in BLASTP GC graphs and in InParanoid

GF graphs is visualized in Figure 4 for simple and 2-adjacencies, respectively. Overall, 70% of the conserved

simple adjacencies of the InParanoid GF graphs were also found in the BLASTP GC graphs, whereas we find

in the latter 90% more conserved adjacencies than in the former. Investigating the high number of InParanoid

adjacencies that are missing in BLASTP GC graphs, we discovered that many generalized adjacencies of the

former span genes that are connected (and therefore breaking the surrounding adjacency) in their BLASTP GC

counterparts. However, the mean number of connected intervening genes was only 1.4. In fact, the overlap of

2-adjacencies in BLASTP GC graphs with 1-adjacencies of InParanoid GF graph was at 83%.

Finally, Figure 5 visualizes the number of nonconflicting conserved adjacencies in BLASTP GC and InParanoid

GF graphs computed for h = 1 using Algorithm 3 (left plot) and computed for h = 2 using Algorithm 30 (right

plot). For the former, we observed on average 42% more nonconflicting conserved adjacencies in BLASTP

GC graphs when compared to their InParanoid GF counterparts, whereas for the latter, this number dropped

to 32%. Nevertheless, from h = 1 to h = 2, the absolute number of nonconflicting conserved adjacencies

increases on average by 27% for BLASTP GC graphs and by 37% for InParanoid GF graphs, respectively.

8.6. Reconstructing the rosid phylogeny

We inferred the phylogeny of our rosid data set using the approach described in Section 7. To this end,

we constructed a 0/1 matrix whose adjacency columns are based on an adjacency matching solving Problem

FIG. 4. Comparison of adjacencies. Overlap of conserved adjacencies between BLASTP GC and InParanoid GF graphs.

FIG. 5. Comparison of nonconflicting adjacencies. Numbers of nonconflicting conserved adjacencies in BLASTP GC

and InParanoid GF graphs for h = 1 (left) and h = 2 (right).
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3 for h = 1. The gene content columns of the matrix were generated from connected components of the joint

gene connection graph of our data set. This matrix was then input to RAxML, which computed the ML tree

shown in Figure 6. We configured RAxML to calculate bootstrap values with 500 replicates. The bootstrap

percentages are shown along the branches.

We used RAxML to infer a further ML tree from our data set, this time using a 0/1 matrix that was

generated with the general family-free approach. In doing so, we applied a similarity measure between

genes called Relative reciprocal BLAST score (Pesquita et al., 2008). Just as in our previous attempt, we

used adjacencies from a matching solving Problem 3 with h = 1. These were then scored as described by

Doerr et al. (2012). We used threshold values 0‚ 0:2‚ 0:6‚ 0:8‚ 0:95‚ and 0:999 to successively prune both

the joint (weighted) adjacency graph and the joint gene similarity graph and encode the connected com-

ponents for each threshold value in the 0/1 matrix. The tree computed by RAxML is shown in Figure 7.

In both phylogenies, the Brassicales (A. thaliana, B. stricta, B. rapa, C. rubella, and E. salsugineum),

Fabales (M. truncatula, P. vulgaris, and G. max), and Rosales (F. vesca and P. persica) cluster not only

together but also their internal branching is consistent with the phylogenetic tree provided by Phytozyme.

FIG. 6. Phylogeny of 18 rosid species based on matching data. The phylogenetic tree was computed by RAxML from

the outcome of the adjacency matching problem for h = 1.
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However, in Figure 6, the three Malpighiales (M. trichocarpa, L. usitatissimum, and R. communis) and two

Malvales (G. raimondii and T. cacao) do not group together at all. The phylogeny of Figure 7 is a more

accurate reconstruction: Two out of three Malpighiales are clustered together and also the Malvales are closer

together. Moreover, the bootstrap values are better than in Figure 6 in the sense that none is below 75.

Still, in both approaches we do not see a consistent branching between different genera. This might be

attributed to the whole-genome duplication events that occurred at the base of Brassicales and Fabales, but

the actual cause remains unclear and demands further investigation.

FIG. 7. Phylogeny of 18 rosid species using the family-free approach. The phylogenetic tree was computed by

RAxML using the general family-free approach on the outcome of the adjacency matching problem for h = 1.
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9. CONCLUSION

We have presented new similarity measures for complete genomes, thereby defining gene connections as

an intermediate model of genome similarity representations, between gene families and the gene family-

free approach. Our theoretical results with some problem variants being polynomial and others being NP-

hard show that we are very close to the hardness border of similarity computations between genomes with

unrestricted gene content. On the practical side we could show that the computation of genomic similarities

and reconstruction of phylogenies in the gene connection model gives meaningful results and is possible in

reasonable time, if the measures and algorithms are designed carefully.

A few questions remain open, though. Since it is always difficult to choose optimal values for parameters

such as the gap threshold h, it will be worthwhile to examine whether parameter estimation methods for

generalized adjacencies as the ones developed by Yang and Sankoff (2010) can be adapted to the gene

connection model.

Various model extensions can also be envisaged. The adjacency matching model (Problem 3) removes

inconsistencies from the output of the total adjacencies model (Problem 1) by computing a maximum

matching on it. It could be tested whether other criteria to remove genes from the genomes and thus derive

consistent sets of conserved adjacencies yield even better results. Moreover, the resulting reduced genomes

with conserved adjacencies could also be used to predict orthologies between the involved genes, not just to

compute genomic similarities.

An alternative objective function for our problem formulations, instead of counting (generalized) gene

adjacencies, could be a variant of the summed adjacency disruption number (Delgado et al., 2010) that also

allows to distinguish between small and larger distortions in gene order.

Finally, Algorithm 3 can easily be generalized for weighted gene similarities (instead of gene connec-

tions). It remains to be evaluated if such a more fine-grained measure in the spirit of a family-free analysis

has advantages compared to the unit-cost measures studied in this article.
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